Seifert surfaces in open books, and a new coding algorithm for links

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

passivity in waiting for godot and endgame: a psychoanalytic reading

this study intends to investigate samuel beckett’s waiting for godot and endgame under the lacanian psychoanalysis. it begins by explaining the most important concepts of lacanian psychoanalysis. the beckettian characters are studied regarding their state of unconscious, and not the state of consciousness as is common in most beckett studies. according to lacan, language plays the sole role in ...

Open Books and Configurations of Symplectic Surfaces

We study neighborhoods of configurations of symplectic surfaces in symplectic 4–manifolds. We show that suitably “positive” configurations have neighborhoods with concave boundaries and we explicitly describe open book decompositions of the boundaries supporting the associated negative contact structures. This is used to prove symplectic nonfillability for certain contact 3–manifolds and thus n...

متن کامل

A Characterization of Quasipositive Seifert Surfaces (constructions of Quasipositive Knots and Links, Iii) Lee Rudolph

Here, a surface is smooth, compact, oriented, and has no component with empty boundary. A Seifert surface is a surface embedded in S3. A subsurface S of a surface T is full if each simple closed curve on S that bounds a disk on T already bounds a disk on S. The definition of quasipositivity is recalled in §1, after a review of braided surfaces. The “only if” statement of the Characterization Th...

متن کامل

Unknotting Tunnels and Seifert Surfaces

Let K be a knot with an unknotting tunnel γ and suppose that K is not a 2-bridge knot. There is an invariant ρ = p/q ∈ Q/2Z, p odd, defined for the pair (K, γ). The invariant ρ has interesting geometric properties: It is often straightforward to calculate; e. g. for K a torus knot and γ an annulus-spanning arc, ρ(K, γ) = 1. Although ρ is defined abstractly, it is naturally revealed when K ∪ γ i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2008

ISSN: 0024-6093

DOI: 10.1112/blms/bdn020